fatf.transparency.models.feature_influence
.partial_dependence_ice¶
-
fatf.transparency.models.feature_influence.
partial_dependence_ice
(ice_array: numpy.ndarray, include_rows: Union[int, List[int], None] = None, exclude_rows: Union[int, List[int], None] = None) → numpy.ndarray[source]¶ Calculates Partial Dependence based on Individual Conditional Expectations.
Note
If you want to calculate Partial Dependence directly from a dataset and a classifier please see
fatf.transparency.models.feature_influence.partial_dependence
function.- Parameters
- ice_arraynumpy.ndarray
Individual Conditional Expectation array for which Partial Dependence is desired.
- include_rowsUnion[int, List[int]], optional (default=None)
Indices of rows that will be included in the PD calculation. If this parameter is specified, PD will only be calculated for the selected rows. If additionally
exclude_rows
is specified the selected rows will be a set difference between the two. This parameter can either be a list of indices or a single index (integer).- exclude_rowsUnion[int, List[int]], optional (default=None)
The indices of rows to be excluded from the PD calculation. If this parameter is specified and
include_rows
is not, these indices will be excluded from all of the rows. If both include and exclude parameters are specified, the rows included in the PD calculation will be a set difference of the two. This parameter can either be a list of indices or a single index (integer).
- Returns
- partial_dependence_arraynumpy.ndarray
A 2-dimensional array of (steps_number, n_classes) shape representing Partial Dependence for all of the classes for selected rows (data points).
- Raises
- IncorrectShapeError
The input array is not a 3-dimensional numpy array.
- TypeError
Either
include_rows
orexclude_rows
parameter is notNone
, an integer or a list of integers.- ValueError
The
ice_array
is not an unstructured numpy array or it is not a numerical array. One of theinclude_rows
orexclude_rows
indices is not valid for the input array.