fatf.fairness.models.measures.disparate_impact¶
- 
fatf.fairness.models.measures.disparate_impact(dataset: numpy.ndarray, ground_truth: numpy.ndarray, predictions: numpy.ndarray, column_index: Union[int, str], label_index: int = 0, groupings: Optional[List[Union[float, Tuple[str]]]] = None, numerical_bins_number: int = 5, treat_as_categorical: Optional[bool] = None, labels: Optional[List[Union[float, str]]] = None, tolerance: float = 0.2, criterion: Optional[str] = None) → Tuple[numpy.ndarray, List[str]][source]¶ Calculates selected disparate impact grid for a data set.
This function combines
fatf.utils.metrics.tools.confusion_matrix_per_subgroupfunction together withfatf.utils.metrics.subgroup_metrics.apply_metricfunction. For the description of parameters, errors and exceptions please see the documentation of these functions.- Parameters
 - dataset, ground_truth, predictions, column_index, groupings, numerical_bins_number, labels, and treat_as_categorical
 See the documentation of
fatf.utils.metrics.tools.confusion_matrix_per_subgroupfunction.- label_indexinteger
 The index of the “positive” class in the confusion matrix. (Not required for binary problems.) See the description of
fatf.utils.data.tools.group_by_columnfunction.- criterionUnion[None, string]
 A string representing group fairness criterion. One of:
'demographic parity','equal opportunity','equal accuracy'orNonefor the default option'equal accuracy'.- tolerancenumber
 A number between 0 and 1 that indicates how much any two metrics can differ to be considered “equal”.
- Returns
 - disparity_gridnumpy.ndarray
 A square, symmetric, boolean numpy array that indicates for which pair of sub-populations a disparity happens.
- Raises
 - TypeError
 The
criterionparameter is neitherNonenor a string.- ValueError
 The
criterionparameter is none of the allowed values (see the description of the parameter).