fatf.utils.metrics.subgroup_metrics
.apply_metric¶
-
fatf.utils.metrics.subgroup_metrics.
apply_metric
(population_confusion_matrix: List[numpy.ndarray], metric: Optional[str] = None, label_index: int = 0, **kwargs) → List[float][source]¶ Applies one of the predefined performance metric to all confusion matrices.
Available metrics are:
true positive rate
,true negative rate
,false positive rate
,false negative rate
,positive predictive value
,negative predictive value
,accuracy
, andtreatment
.
- Parameters
- population_confusion_matrixList[numpy.ndarray]
A list of confusion matrices for each sub-population.
- metricstring, optional (default=’accuracy’)
A performance metric identifier that will be used.
- label_indexinteger, optional (default=0)
The index of a label that should be treated as “positive”. All the other labels will be treated as “negative”. This is only useful when the confusion matrices are multi-class.
- Returns
- metricsList[number]
A list with the value of the selected metric for every sub-population.
- Raises
- TypeError
The
metric
parameter is not a string.- ValueError
The
metric
parameter specifies an unknown metric.