fatf.utils.metrics.metrics
.multiclass_negative_predictive_value¶
-
fatf.utils.metrics.metrics.
multiclass_negative_predictive_value
(confusion_matrix: numpy.ndarray, label_index: int, strict: bool = False) → float[source]¶ Gets the “negative predictive value” for a multi-class confusion matrix.
There are two possible ways of calculating it:
- strict
The true negatives are all non-positive ground truth predicted correctly.
- relaxed
The true negatives are defined as all non-positive ground truth predicted as any non-positive.
See the documentation of
fatf.utils.metrics.tools.validate_confusion_matrix
for all the possible errors and exceptions.- Parameters
- confusion_matrixnumpy.ndarray
A confusion matrix based on which the metric will be computed.
- label_indexinteger
The index of a label that should be treated as “positive”. All the other labels will be treated as “negative”.
- strictboolean, optional (default=False)
If
True
, the “true negatives” are calculated “strictly”, otherwise a generalised approach to “true negatives” is used.
- Returns
- metricnumber
The “negative predictive value”.
- Raises
- TypeError
The
strict
parameter is not a boolean.